Skip to main content

Scientific Image - Indium Arsenide Nanowire Field-Effect Transistor

Magnified image of an indium arsenide (InAs) nanowire field-effect transistor using a Scanning Electron Microscope.

DESCRIPTION

This scanning electron microscope image shows an indium arsenide (InAs) nanowire field-effect transistor. Semiconductor nanowires such as those of indium arsenide (InAs) offer exciting possibilities for the electronic systems of the future because of the unique possibilities they offer for controlling fundamental properties during generation. A wide range of nanowire-based devices and systems, including transistors, circuits, light emitters, and sensors, have already been explored. Nanowire field-effect transistors have been of particular interest as vehicles for the investigation of basic carrier-transport behavior and as the heart of new generations of high-performance electronic devices. • SIZE: The nanowire at center is about 5 µm long. • IMAGING TOOL: Scanning electron microscope

JUMP TO BROWSE RELATED RESOURCES

DESCRIPTION

This scanning electron microscope image shows an indium arsenide (InAs) nanowire field-effect transistor. Semiconductor nanowires such as those of indium arsenide (InAs) offer exciting possibilities for the electronic systems of the future because of the unique possibilities they offer for controlling fundamental properties during generation. A wide range of nanowire-based devices and systems, including transistors, circuits, light emitters, and sensors, have already been explored. Nanowire field-effect transistors have been of particular interest as vehicles for the investigation of basic carrier-transport behavior and as the heart of new generations of high-performance electronic devices. • SIZE: The nanowire at center is about 5 µm long. • IMAGING TOOL: Scanning electron microscope

JUMP TO BROWSE RELATED RESOURCES

OBJECTIVES

NANO CONTENT MAP

Nanometer-sized things are very small, and often behave differently than larger things do.

Nanoscience, nanotechnology, and nanoengineering lead to new knowledge and innovations that weren't possible before.

Credits

YEAR CREATED
2014
OWNING INSTITUTION

Shadi Dayeh, University of California at San Diego - Attribution is required. The creator listed here has made this image available to NISE Network partners for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and websites.

PERMISSIONS

The creator listed above has made this image available to NISE Network partners for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and websites.