Image

Scientific Image - Platinum Atoms

Platinum atoms are arranged in closely packed hexagonal layers. A top view of this hexagonal structure is shown in this scanning tunneling microscope image.

Platinum has applications in automotive engineering, chemical processing, jewelry, electronics, and wires and electrical contacts for use in corrosive or high-voltage environments. Platinum is also a component in magnetic coatings for high-density hard disc drives and new varieties of optical storage systems.

• SIZE: The size of a platinum atom is around 0.3 nm.

• IMAGING TOOL: Scanning tunneling microscope

Scientific Image - Water Droplet on a Nasturtium Leaf

The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

• IMAGING TOOL: Optical microscope

Scientific Image - Nasturtium Leaf

The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

• SIZE: Each wax nanocrystal bundle is about 1-2 µm wide.

Scientific Image - Nasturtium Leaf

The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

Pages

Subscribe to RSS - Image