scanning electron microscope

Scientific Image - Nasturtium Leaf

The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

• SIZE: Each wax nanocrystal bundle is about 1-2 µm wide.

Scientific Image - Nasturtium Leaf

The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

Scientific Image - Multiwalled Carbon Nanotube Yarn

Nanoscale fibers drawn from multiwalled carbon nanotubes have strengths comparable to spider silk. Replacing metal wires in electronic textiles with these super-strong yarns could lead to important new functionalities, such as the ability to actuate (as an artificial muscle) and to store energy (as a fiber super-capacitor or battery).

• SIZE: The yarn's diameter is about 1 µm. The nanotubes from which it is being drawn are each about 10 nm in diameter.

• IMAGING TOOL: Scanning electron microscope

Scientific Image - Gecko Foot

The gecko's amazing ability to cling to vertical or inverted surfaces is due to the interaction between nanoscale structures on its feet and tiny crevices on the wall or ceiling. The soles of gecko feet are made up of overlapping adhesive lamellae covered with millions of superfine hairs, or setae, each of which branches out at the end into hundreds of spatula-shaped structures. These flexible pads—each measuring only a few nanometers across—curve to fit inside unseen cracks and divots on the surface. The combined adhesion of these millions of pads holds the gecko in place.

Scientific Image - Gecko Foot

The gecko's amazing ability to cling to vertical or inverted surfaces is due to the interaction between nanoscale structures on its feet and tiny crevices on the wall or ceiling. The soles of gecko feet are made up of overlapping adhesive lamellae covered with millions of superfine hairs, or setae, each of which branches out at the end into hundreds of spatula-shaped structures. These flexible pads—each measuring only a few nanometers across—curve to fit inside unseen cracks and divots on the surface. The combined adhesion of these millions of pads holds the gecko in place.

Scientific Image - Gecko Toe

The gecko's amazing ability to cling to vertical or inverted surfaces is due to the interaction between nanoscale structures on its feet and tiny crevices on the wall or ceiling. The soles of gecko feet are made up of overlapping adhesive lamellae covered with millions of superfine hairs, or setae, each of which branches out at the end into hundreds of spatula-shaped structures. These flexible pads—each measuring only a few nanometers across—curve to fit inside unseen cracks and divots on the surface. The combined adhesion of these millions of pads holds the gecko in place.

Pages

Subscribe to RSS - scanning electron microscope