Will nano change my life?

Nanotechnology is a new field of science and engineering that focuses on studying and making very, very small things. Nanotechnologies are devices and materials that are less than 100 nanometers in size. That’s about the size of a virus!

Right now, most of the nanotechnologies you come across are incorporated into existing products, making them better. For example, nanotechnology makes computer chips smaller and faster, and golf clubs stronger and lighter. But future nanotechnologies will address issues of global importance, such as energy, medicine, water, and food.

Is nanotechnology safe?

Like all technologies, nanotechnology brings both benefits and risks. Nanotechnology takes advantage of special properties at the nanoscale—giving great promise for innovation, but also leading to new kinds of risks.

Many nanotechnologies fall under the same regulations as conventional technologies. But materials can act differently on the nanoscale. So a familiar material that’s generally regarded as safe might not be so safe when it’s nano-sized. Nanoparticles are also difficult to detect, which makes it hard to monitor their use and dispersal into the environment. Scientists and policy-makers are already working to assess the risks of nanotechnologies, and decide whether special regulations are needed to protect people and the environment.

As nanotechnologies are developed, we’ll reap new benefits but also face new risks. And our lives, relationships and ways of looking at the world may change in ways we can’t predict. It’s important for everyone—individual citizens, companies, governments—to think ahead and plan for these changes.
Will nano change the world?

Think how much the invention of the automobile or personal computer changed things! Some researchers expect nanotechnology to transform our lives just as much, within the next decade or so.

Of course, we don’t know if nanotechnology will really change the world. Right now, most nanotechnology products are simply improved versions of things we already have: stain-resistant pants, smoother cosmetics, and antimicrobial socks. But researchers are working to develop nanotechnologies that could revolutionize life all over the globe, by fighting disease, generating clean energy, improving food supplies, and purifying water.

Is nanotechnology safe?

Like all technologies, nanotechnology brings both benefits and risks. Nanotechnology takes advantage of special properties at the nanoscale—giving great promise for innovation, but also leading to new kinds of risks.

Many nanotechnologies fall under the same regulations as conventional technologies. But materials can act differently on the nanoscale—giving great promise for innovation, but also leading to new kinds of risks.

As nanotechnologies are developed, we’ll reap new benefits but also face new risks. And our lives, relationships and ways of looking at the world may change in ways we can’t predict. It’s important for everyone—individual citizens, companies, governments—to think ahead and plan for these changes.
How do we study and make nanotechnology?

Nanoscientists and engineers study and make tiny things too small to see—less than 100 nanometers in size. Some nanotechnologies and nanomaterials can be built from individual atoms! To work at such a small scale, researchers have developed new ways to investigate and build tiny things.

Building at the nanoscale

The building blocks for nanotechnologies include individual atoms and molecules. There are two main ways to build nanosized things, known as top-down and bottom-up.

Top-down techniques begin with bigger chunks of materials and then remove pieces to create a smaller structure. Computer chips are a good example of top-down fabrication. To make computer chips, scientists print and etch many layers of tiny patterns on a silicon wafer.

Bottom-up techniques begin with small pieces and assemble them into a bigger structure. One example of this is self-assembly, where tiny things actually build themselves! Self-assembly occurs all the time in nature. For example, water molecules self-assemble into snowflakes.

“Seeing” at the nanoscale

Nano-sized things are too small to see with just your eyes, or even with regular light microscopes. Researchers use special tools to explore and move tiny things. One important set of tools is called scanning probe microscopes (SPMs).

Scanning probe microscopes can detect and make images of things as small as a single atom! SPMs have a sharp tip that moves back and forth across a material. As it moves, the tip “feels” and measures changes in the surface. A computer combines the information gathered by the tip and makes an image. Some kinds of SPMs can also be used to move atoms around. This allows researchers to build tiny things one atom at a time.
How is nano inspired by nature?

Some of the beautiful and surprising things we observe in nature are due to special nanoscale properties. Researchers can be inspired by nature to create new nanotechnologies and nanomaterials.

Lotus leaves
Lotus, nasturtiums, and some other plant leaves have small bumps covered in nano-sized whiskers. These tiny nanostructures keep water and dirt from sticking to the leaves. Water just beads up and rolls off! Scientists call this the *lotus effect*. Stain-resistant fabrics, self-cleaning windows, and other nano products mimic the water-repelling properties of lotus leaves.

Butterfly wings
Blue Morpho butterfly wings are a bright, iridescent blue. Surprisingly, their brilliant color is actually created by tiny, colorless nanostructures! Light waves bounce off the tiny structures, reflecting blue light to your eyes. Researchers are working on new nanotechnologies that mimic the Blue Morpho’s wings. They’ve already invented paints, fabrics, and low-energy electronic displays that use the spacing of nanostructures to create color.

Gecko feet
Geckos can climb up walls and across ceilings, but there’s no glue on the bottom of their feet! Instead, millions of tiny nano-sized hairs bond with the wall. To move, the gecko tilts its foot, breaking the bonds. Special “gecko tape” uses the size and shape of nanostructures to stick, just like gecko toes do! Researchers are experimenting with using gecko tape on the feet of climbing robots.

Snowflake growth
When weather conditions are right, tiny hexagonal ice crystals grow in clouds and fall to the ground as intricate snowflakes. This process is known as *self-assembly*, because snowflakes assemble themselves from water molecules. Some researchers predict that in the future, new nanotechnologies and materials will build themselves the way snowflakes do! Already, there are computer chips with self-assembled nanocrystals.

C. Mathisen, FEI Company
C. NEINHUIS, W. BARTHLOTT

Gecko feet are an example of nano in nature

Kenneth Libbrecht, Caltech, www.snowcrystals.com
What is stuff made of?

Everything on Earth is made of atoms, which are tiny particles smaller than a nanometer. (A nanometer is a billionth of a meter.) Examples of atoms include carbon, oxygen, and hydrogen.

Atoms and molecules
Atoms join together in different ways to form molecules. The way that these tiny building blocks are arranged helps determine the properties, or behavior, of a material.

Carbon is a good example of how one kind of atom can combine in different ways to make very different materials. Carbon atoms can form diamond, the hardest natural material known on Earth, but they can also form graphite, one of the softest materials.

Both diamonds and graphite (pencil lead) are made entirely from carbon. They have different properties because the carbon atoms are arranged differently.

Nano structures
Carbon can also form structures that are too small to see: carbon nanotubes, buckyballs, and graphene. These tiny nanostructures have special properties due to the way their carbon atoms are arranged.

Carbon nanotubes are long, hollow tubes. They’re very strong and light, and can act as semiconductors or conductors. Carbon nanotubes are used to strengthen materials. Researchers are studying ways to use them in electronics, fuel cells, and other technologies.

Buckyballs look like tiny soccer balls. They’re good lubricants because of their spherical shape. Their hollow structure could make them useful for delivering medicine.

Graphene is a thin, flat sheet only one atom thick. It’s strong and flexible, and it conducts electricity and heat. Single graphene sheets could be used in integrated circuits in computers and in sensors that detect gases.
What’s surprising about nanomaterials?

When things are very, very small, they sometimes behave in different and surprising ways. For example, some materials are different colors when they’re nano-sized. Nanotechnology takes advantage of the special properties at the nanoscale to create new materials and technologies.

Ferrofluid is the only liquid that’s magnetic! All other magnetic materials are solid. When there’s no magnet around, ferrofluid is a thick fluid. But when a magnetic field is nearby, ferrofluid stiffens up and behaves like a solid.

This surprising property, called **superparamagnetism**, is found only at the nanoscale. Ferrofluid is made of tiny, nano-sized particles of iron oxide suspended in liquid.

Ferrofluid was invented by NASA in the 1960s as a way to control liquids in space. Nowadays, it’s used in loudspeakers to dampen vibrations, in car brakes, and in the rotary seals of computer hard drives. In the future, ferrofluid might be used to carry medications to specific spots in the body.

Liquid crystals aren’t liquid, and they aren’t solid. They’re somewhere in between! The molecules in a liquid crystal can move around independently, like a liquid, but they still remain somewhat organized, like a solid (crystal).

Liquid crystal molecules can respond to their environment by rearranging themselves. We perceive this as a change in color, because liquid crystals reflect light differently when their molecules are arranged differently. Some liquid crystals react to an electrical current, as in liquid crystal displays (LCDs). Others react to changes in temperature or the presence of certain gases in the air.

Liquid crystals are used in displays for cell phones, laptop computers, and other electronics.

Gold is a familiar metal…but when it’s nano-sized, it has some unfamiliar properties! Big pieces look shiny and golden, but nano-sized gold can be red, purple, or blue, depending on the size of the particles. Nano gold has been the secret ingredient in red stained glass since the Middle Ages.

Today, nano gold is being used in an experimental cancer therapy that targets tumors, leaving healthy tissue unharmed. Nano gold is also used to detect specific strands of DNA.
Try measuring in nanometers!

How big is your hand?

Your hand is millions of nanometers long! That sounds amazing, but it doesn’t mean that your hand is super big—it means that a nanometer is super small.

A nanometer is a billionth of a meter
Nanometers are used to measure things that are too small to see. It takes a lot of nanometers to measure something relatively big, like your hand.
How small is nano?
The world is full of things of all different sizes! In your everyday life, you come across things in at least three different size scales: the macroscale, the microscale, and the nanoscale.

Macroscale
The macroscale includes things we can see with our eyes, from big to small. There are lots of ways to measure macroscale things, including meters. Meters are about the same size as a yard.

Kids around six years old are about a meter tall. A strand of hair is just a fraction of a meter, 0.1 millimeters.

Microscale
The microscale is smaller than the macroscale. To see microscale things clearly, we need tools like microscopes. We measure them using micrometers.

A micrometer is a millionth of a meter. Red blood cells are about 10 micrometers wide.

Nanoscale
There's an even smaller scale, the nanoscale! Nanoscale things are so tiny, we can't see them with just our eyes, or even with light microscopes. We need special tools to make images of them. We measure nanoscale things using nanometers.

A nanometer is super small—a billionth of a meter! DNA is just two nanometers wide.

What's a nanometer?
A nanometer is a billionth of a meter. That's really tiny! Nanometers are used to measure things that are too small to see, like parts of a cell or DNA.