Nasturtium

Water Droplet on Nasturtium Leaf

Water Droplet on Nasturtium Leaf
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

Minimum credit: 

A. Otten and S. Herminghaus, Göttingen, Germany

Pixels: Width: 

767

Pixels: Height: 

423

Permissions:

This image was created by another institution, not the NISE Network. This image is available to NISE Network member organizations for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and Web sites. Minimum credit required.

Return to gallery

Nasturtium Leaf (10,000X)

Nasturtium Leaf (10,000X)
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

Minimum credit: 

A. Otten and S. Herminghaus, Göttingen, Germany

Size: 

Each wax nanocrystal bundle is about 1-2 µm wide.

Pixels: Width: 

666

Pixels: Height: 

512

Permissions:

This image was created by another institution, not the NISE Network. This image is available to NISE Network member organizations for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and Web sites. Minimum credit required.

Return to gallery

Nasturtium Leaf (8000X)

Nasturtium Leaf (8000X)
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

Minimum credit: 

Ann Marshall, Stanford University

Size: 

The wax nanocrystal bundles covering the leaf are each about 1-2 µm wide.

Pixels: Width: 

645

Pixels: Height: 

522

Permissions:

This image was created by another institution, not the NISE Network. This image is available to NISE Network member organizations for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and Web sites. Minimum credit required.

Return to gallery

Nasturtium Leaf (2500X)

Nasturtium Leaf (2500X)
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

Minimum credit: 

Ann Marshall, Stanford University

Size: 

The veins form sections on the leaf. The average size of these sections is 20-40 µm.

Pixels: Width: 

645

Pixels: Height: 

522

Permissions:

This image was created by another institution, not the NISE Network. This image is available to NISE Network member organizations for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and Web sites. Minimum credit required.

Return to gallery

Nasturtium Leaf

Nasturtium Leaf
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy nanocrystal bundles. The uneven surface created by these tiny structures traps air between water and leaf, causing the water to roll off. Research on such nanoscale effects has inspired revolutionary new materials, including water- and stain-resistant fabrics.

Minimum credit: 

Amy Snyder, Exploratorium

Size: 

The size of each leaf is about 6-10 cm.

Pixels: Width: 

1974

Pixels: Height: 

1698

Permissions:

This image was created by another institution, not the NISE Network. This image is available to NISE Network member organizations for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and Web sites. Minimum credit required.

Return to gallery