Electrical

Silicon Nanowire

Silicon Nanowire
This transmission electron microscope image shows a single silicon nanowire. Thermoelectric materials convert heat to electricity and vice versa. Most fossil-fuel-powered engines generate waste heat, so researchers are using nanotechnologies to explore ways of making thermoelectric devices more efficient in order to convert that waste heat to usable power—and thus save energy.

Minimum credit: 

Renkun Chen, University of California at Berkeley

Size: 

The diameter of this nanowire is approximately 100 nm.

Pixels: Width: 

1215

Pixels: Height: 

1215

Permissions:

This image was created by another institution, not the NISE Network. This image is available to NISE Network member organizations for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and Web sites. Minimum credit required.

Return to gallery

Silicon Nanowire Array

Silicon Nanowire Array
This is a scanning electron microscope image of a silicon nanowire array synthesized for thermoelectric applications. Thermoelectric materials convert heat to electricity and vice versa. Most fossil-fuel-powered engines generate waste heat, so researchers are using nanotechnologies to explore ways of making thermoelectric devices more efficient in order to convert that waste heat to usable power—and thus save energy.

Minimum credit: 

Renkun Chen, University of California at Berkeley

Size: 

Each nanowire is approximately 100 nm in diameter.

Pixels: Width: 

1233

Pixels: Height: 

1233

Permissions:

This image was created by another institution, not the NISE Network. This image is available to NISE Network member organizations for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and Web sites. Minimum credit required.

Return to gallery

Aligned Multiwalled Carbon Nanotube Forest

Aligned Multiwalled Carbon Nanotube Forest
This scanning electron microscope image shows a wall of carbon nanotubes. Multiwalled carbon nanotubes are nested within each other. They exhibit extraordinary strength and unique electrical properties. Multiwalled carbon nanotubes are actually tubes nested within tubes. These cylindrical carbon molecules have extraordinary strength and important electrical properties, making them potentially useful for many applications in electronics, optics, and other areas of materials science, as well as architectural fields.

This is a NISE Network product: 

no

Size: 

The diameter of a nanotube is around 10 nm.

Pixels: Width: 

1024

Pixels: Height: 

768

Permissions:

This image was created by another institution, not the NISE Network. This image is available to NISE Network member organizations for non-profit educational use only. Uses may include but are not limited to reproduction and distribution of copies, creation of derivative works, and combination with other assets to create exhibitions, programs, publications, research, and Web sites. Minimum credit required.

Return to gallery