

From Research

ChemAttitudes

ChemAttitudes is an NSF-AISL funded design-based research project intended to generate educational activities and materials that have a strategic impact on attitudes about learning Chemistry:

- Interest
- Understanding and perception of relevance
- Feelings of self-efficacy

The project examined three aspects of the hands-on chemistry activities designed for informal education settings: content, format, and facilitation. Here we focus on the learning framework underlying the facilitation codes developed by the research team and how the research team's work was used for the Research and Practice Guide.

Learning Frameworks for Facilitation

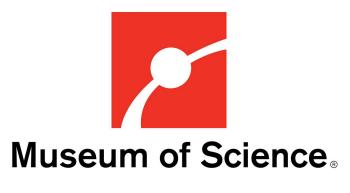
The research team modeled the ChemAttitudes coding framework on the Exploratorium's Facilitation Field Guide for tinkering and making activities (above), based on the idea that facilitation impacts learning. It also overlapped with our educators' descriptions of techniques they used with visitors while facilitating activities.

Spark initial interest

Sustain participation by following the learner's ideas

Deepen understanding through making connections

Tinkering Studio Framework ChemAttitudes Facilitation Framework


Invite Participation: introduces an activity and engages all members in a group.

Support Exploration: maintains visitor engagement in both thinking and physical step-by-step processes of an activity.

Deepen Understanding: provides supplemental information and reflects on the "why" and "how" to encourage further exploration and meaning-making.

Tinkering with Maker and Chemistry-based Activity Facilitation Frameworks

Hever Velázquez¹, Gretchen Haupt¹, Marjorie Bequette¹, Rae Ostman³, ²Liz Kollmann, Marta Beyer², Allison Anderson², Owen Weitzman² ¹ Science Museum of Minnesota, ² Museum of Science Boston, ³ Arizona State University

And Practice

Development of the Research and Practice Guide

Consistent with the project's design-based research approach, which integrates research and practice throughout the process of creating and studying an educational intervention, the team created a guide that reports on the findings and insights of the project's research and educational activity development. The guide is designed to be a tool for informal educators, chemists familiar with educational outreach, and others that are planning and implementing hands-on programming activities. It is complemented by a variety of practical training tools, which put the ideas contained in the guide—and the activities developed by the project team—into practice.

Nature of Chemistry Activity Facilitation

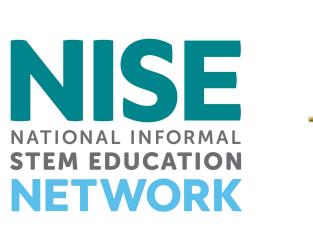
Modifying the Exploratorium's Facilitation Framework revealed similarities and differences between Let's Do Chemistry and Tinkering Studio in terms of facilitation moves and the content and format of different types of activities (tinkering vs. inquiry-based).

Shared Characteristics	Inquiry-based activity facilitation	Adaptations For Chemistry Activities
 Practiced in ISE Facilitation moves observed across activities Facilitation occurs in similar but not uniform progression Learner/ing focused Creative problem solving Highly interactive 	 End-goal driven, facilitator determined Activity content and format pre-designed Bound to specific learner outcomes Facilitation maintains momentum to support end-goal Facilitation to avoid failure Deepened understanding focused on topic Facilitation sparks interest in activity Facilitation driven by structured linear activity design 	 Invite participation occurs throughout the activity to keep things going through transitions between activity stages. Support exploration invites visitors to engage authentically with the materials and explore the process Deepen understanding prompts reflection, meaning making, and connections. Deepen and Support are more dependent on the facilitator than on the visitors or activity outcomes.

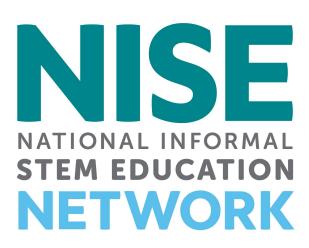
Recommendations

Using a framework for facilitation can articulate learning and engagement goals in powerful ways for those studying informal learning. It is important for others in the field to use frameworks to understand learning in both research and practice contexts. Based on our experience, the research team feels that the framework developed to understand and support facilitation impacts in Let's Do *Chemistry* activities would also work for other inquiry activities.

However, it is important to consider where learning goals diverge among informal learning experiences. The research team took a compelling learning framework built around one set of learning goals (making and tinkering) and worked to adjust it for a different project context (inquiry-based chemistry activities), and think other researchers and practitioners can use a similar process to adopt and customize existing frameworks if needed.


Facilitation techniques to encourage positive attitudes towards chemistry

Invite participation


• Greet participants • Start with the basics Model what to do • Engage the whole group • Have fun!

Learning outcomes of positive attitudes towards chemistry

Increased **interest** in chemistry Increased **relevance** of chemistry to their lives Increased feelings of **self-efficacy** about chemistry

Support exploration

- Let participants do activity
- Be flexible and attentive
- Ask guiding questions • Be a good listener
- Support through challenges
- Offer positive feedback

Deepen understanding

- Ask discussion questions
- Make connections
- Share your experience
- Wrap up

This work was based on work supported by the National Science Foundation under Grant No. DRL-1612482. Any opinions, findings, and conclusions or recommendations expressed in this presentation are those of the authors and do not necessarily reflect the views of the Foundation.