

Explorando la fabricación: cápsulas de goma

¿Cómo pueden autoconstruirse los objetos?

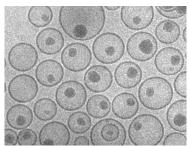
whatisnano.org

Explorando la fabricación: cápsulas de goma

ilntenta esto!

- 1. Coloca el tamiz dentro del tazón de agua salada (solución de cloruro de calcio).
- Aprieta suavemente la botella de "pegamento de gusano", de manera que las gotitas individuales de líquido caigan dentro del tamiz.
- 3. Levanta el tamiz y sácalo del tazón.
- 4. Siente las gotas. ¿Siguen siendo líquidas?
- 5. Trata de exprimir una gota. ¿Qué pasa?

¿Qué sucede?


Cuando las gotitas líquidas entran en contacto con el agua salada, se desencadena una reacción química y se crea un *polímero*. Un polímero es una molécula larga en forma de cadena, formada por muchas unidades repetidas vinculadas entre sí.

El polímero se forma en la superficie exterior de las gotas, donde tocan el agua salada, creando un cascarón alrededor del interior líquido. El agua salada es una solución de cloruro de calcio. El líquido en la botella exprimible es *alginato de sodio*, un polisacárido con muchas moléculas cortas de polímero. Los iones de calcio en el agua salada entrelazan (adhieren) estas moléculas cortas de polímero en hebras más largas, convirtiendo el alginato de sodio en una gelatina espesa.

Las gotitas de polímero que hiciste son parecidas a las *nanocápsulas*, partículas pequeñísimas con un cascarón exterior y un interior hueco que pueden ser llenadas. Para crear estructuras funcionales de menos de 100 nanómetros de ancho, los científicos usan un proceso llamado *autoensamble*, en el que, de hecho, ilas nanoestructuras se ensamblan a sí mismas! (Un nanómetro es la mil millonésima parte de un metro).

Las nanocápsulas pueden ser diseñadas para administrar medicina a partes enfermas del cuerpo, sin tocar las partes sanas. Por ejemplo, en la Universidad Duke, la investigación los llevó al desarrollo de nanocápsulas de liposomas que llevan el medicamento contra el cáncer a los tumores. Estos sistemas específicos de entrega utilizan mucho menos medicina, por lo que tienen efectos secundarios menos dañinos y en menor cantidad.

¿Por qué es nanotecnología?

Nanocápsulas acarreando medicamento contra el cáncer 100 nm de ancho

El autoensamble es un proceso por el cual, las moléculas y células se forman a sí mismas en estructuras funcionales. El autoensamble ocurre en la naturaleza: los copos de nieve, las burbujas de jabón y el ADN son tan sólo tres ejemplos de cosas que se construyen a sí mismas.

Los investigadores en el campo de la nanotecnología están estudiando el autoensamble para crear nuevos materiales y tecnologías menores a 100 nanómetros. (Un nanómetro de la mil millonésima parte de un metro.)

La nanotecnología permite a los científicos e ingenieros hacer cosas como chips de computadora más pequeños y más rápidos, así como nuevas medicinas para tratar enfermedades como el cáncer.